Learning a risk-aware policy is essential but rather challenging in unstructured robotic tasks. Safe reinforcement learning methods open up new possibilities to tackle this problem. However, the conservative policy updates make it intractable to achieve sufficient exploration and desirable performance in complex, sample-expensive environments. In this paper, we propose a dual-agent safe reinforcement learning strategy consisting of a baseline and a safe agent. Such a decoupled framework enables high flexibility, data efficiency and risk-awareness for RL-based control. Concretely, the baseline agent is responsible for maximizing rewards under standard RL settings. Thus, it is compatible with off-the-shelf training techniques of unconstrained optimization, exploration and exploitation. On the other hand, the safe agent mimics the baseline agent for policy improvement and learns to fulfill safety constraints via off-policy RL tuning. In contrast to training from scratch, safe policy correction requires significantly fewer interactions to obtain a near-optimal policy. The dual policies can be optimized synchronously via a shared replay buffer, or leveraging the pre-trained model or the non-learning-based controller as a fixed baseline agent. Experimental results show that our approach can learn feasible skills without prior knowledge as well as deriving risk-averse counterparts from pre-trained unsafe policies. The proposed method outperforms the state-of-the-art safe RL algorithms on difficult robot locomotion and manipulation tasks with respect to both safety constraint satisfaction and sample efficiency.
translated by 谷歌翻译
Safety comes first in many real-world applications involving autonomous agents. Despite a large number of reinforcement learning (RL) methods focusing on safety-critical tasks, there is still a lack of high-quality evaluation of those algorithms that adheres to safety constraints at each decision step under complex and unknown dynamics. In this paper, we revisit prior work in this scope from the perspective of state-wise safe RL and categorize them as projection-based, recovery-based, and optimization-based approaches, respectively. Furthermore, we propose Unrolling Safety Layer (USL), a joint method that combines safety optimization and safety projection. This novel technique explicitly enforces hard constraints via the deep unrolling architecture and enjoys structural advantages in navigating the trade-off between reward improvement and constraint satisfaction. To facilitate further research in this area, we reproduce related algorithms in a unified pipeline and incorporate them into SafeRL-Kit, a toolkit that provides off-the-shelf interfaces and evaluation utilities for safety-critical tasks. We then perform a comparative study of the involved algorithms on six benchmarks ranging from robotic control to autonomous driving. The empirical results provide an insight into their applicability and robustness in learning zero-cost-return policies without task-dependent handcrafting. The project page is available at https://sites.google.com/view/saferlkit.
translated by 谷歌翻译
安全的加强学习(RL)研究智能代理人不仅必须最大程度地提高奖励,而且还要避免探索不安全领域的问题。在这项研究中,我们提出了CUP,这是一种基于约束更新投影框架的新型政策优化方法,享有严格的安全保证。我们杯杯发展的核心是新提出的替代功能以及性能结合。与以前的安全RL方法相比,杯子的好处1)杯子将代孕功能推广到广义优势估计量(GAE),从而导致强烈的经验性能。 2)杯赛统一性界限,为某些现有算法提供更好的理解和解释性; 3)CUP仅通过一阶优化器提供非凸的实现,该优化器不需要在目标的凸面上进行任何强近似。为了验证我们的杯子方法,我们将杯子与在各种任务上进行的安全RL基线的全面列表进行了比较。实验表明杯子在奖励和安全限制满意度方面的有效性。我们已经在https://github.com/rl-boxes/safe-rl/tree/ main/cup上打开了杯子源代码。
translated by 谷歌翻译
安全加强学习(RL)在对风险敏感的任务上取得了重大成功,并在自主驾驶方面也表现出了希望(AD)。考虑到这个社区的独特性,对于安全广告而言,仍然缺乏高效且可再现的基线。在本文中,我们将SAFERL-KIT释放到基准的安全RL方法,以实现倾向的任务。具体而言,SAFERL-KIT包含了针对零构成的侵略任务的几种最新算法,包括安全层,恢复RL,非政策Lagrangian方法和可行的Actor-Critic。除了现有方法外,我们还提出了一种名为精确惩罚优化(EPO)的新型一阶方法,并充分证明了其在安全AD中的能力。 SAFERL-KIT中的所有算法均在政策设置下实现(i),从而提高了样本效率并可以更好地利用过去的日志; (ii)具有统一的学习框架,为研究人员提供了现成的接口,以将其特定领域的知识纳入基本的安全RL方法中。最后,我们对上述算法进行了比较评估,并阐明了它们的安全自动驾驶功效。源代码可在\ href {https://github.com/zlr20/saferl_kit} {this https url}中获得。
translated by 谷歌翻译
安全的强化学习旨在学习最佳政策,同时满足安全限制,这在现实世界中至关重要。但是,当前的算法仍在为有效的政策更新而努力,并具有严格的约束满意度。在本文中,我们提出了受惩罚的近端政策优化(P3O),该政策优化(P3O)通过单一的最小化等效不受约束的问题来解决麻烦的受约束政策迭代。具体而言,P3O利用了简单的罚款功能来消除成本限制,并通过剪裁的替代目标消除了信任区域的约束。从理论上讲,我们用有限的惩罚因素证明了所提出的方法的精确性,并在对样品轨迹进行评估时提供了最坏情况分析,以实现近似误差。此外,我们将P3O扩展到更具挑战性的多构造和多代理方案,这些方案在以前的工作中所研究的情况较少。广泛的实验表明,在一组受限的机车任务上,P3O优于奖励改进和约束满意度的最先进算法。
translated by 谷歌翻译
In real teaching scenarios, an excellent teacher always teaches what he (or she) is good at but the student is not. This method gives the student the best assistance in making up for his (or her) weaknesses and becoming a good one overall. Enlightened by this, we introduce the approach to the knowledge distillation framework and propose a data-based distillation method named ``Teaching what you Should Teach (TST)''. To be specific, TST contains a neural network-based data augmentation module with the priori bias, which can assist in finding what the teacher is good at while the student are not by learning magnitudes and probabilities to generate suitable samples. By training the data augmentation module and the generalized distillation paradigm in turn, a student model that has excellent generalization ability can be created. To verify the effectiveness of TST, we conducted extensive comparative experiments on object recognition (CIFAR-100 and ImageNet-1k), detection (MS-COCO), and segmentation (Cityscapes) tasks. As experimentally demonstrated, TST achieves state-of-the-art performance on almost all teacher-student pairs. Furthermore, we conduct intriguing studies of TST, including how to solve the performance degradation caused by the stronger teacher and what magnitudes and probabilities are needed for the distillation framework.
translated by 谷歌翻译
Masked image modeling (MIM) performs strongly in pre-training large vision Transformers (ViTs). However, small models that are critical for real-world applications cannot or only marginally benefit from this pre-training approach. In this paper, we explore distillation techniques to transfer the success of large MIM-based pre-trained models to smaller ones. We systematically study different options in the distillation framework, including distilling targets, losses, input, network regularization, sequential distillation, etc, revealing that: 1) Distilling token relations is more effective than CLS token- and feature-based distillation; 2) An intermediate layer of the teacher network as target perform better than that using the last layer when the depth of the student mismatches that of the teacher; 3) Weak regularization is preferred; etc. With these findings, we achieve significant fine-tuning accuracy improvements over the scratch MIM pre-training on ImageNet-1K classification, using all the ViT-Tiny, ViT-Small, and ViT-base models, with +4.2%/+2.4%/+1.4% gains, respectively. Our TinyMIM model of base size achieves 52.2 mIoU in AE20K semantic segmentation, which is +4.1 higher than the MAE baseline. Our TinyMIM model of tiny size achieves 79.6% top-1 accuracy on ImageNet-1K image classification, which sets a new record for small vision models of the same size and computation budget. This strong performance suggests an alternative way for developing small vision Transformer models, that is, by exploring better training methods rather than introducing inductive biases into architectures as in most previous works. Code is available at https://github.com/OliverRensu/TinyMIM.
translated by 谷歌翻译
In this paper, we propose a robust 3D detector, named Cross Modal Transformer (CMT), for end-to-end 3D multi-modal detection. Without explicit view transformation, CMT takes the image and point clouds tokens as inputs and directly outputs accurate 3D bounding boxes. The spatial alignment of multi-modal tokens is performed implicitly, by encoding the 3D points into multi-modal features. The core design of CMT is quite simple while its performance is impressive. CMT obtains 73.0% NDS on nuScenes benchmark. Moreover, CMT has a strong robustness even if the LiDAR is missing. Code will be released at https://github.com/junjie18/CMT.
translated by 谷歌翻译
Dataset distillation has emerged as a prominent technique to improve data efficiency when training machine learning models. It encapsulates the knowledge from a large dataset into a smaller synthetic dataset. A model trained on this smaller distilled dataset can attain comparable performance to a model trained on the original training dataset. However, the existing dataset distillation techniques mainly aim at achieving the best trade-off between resource usage efficiency and model utility. The security risks stemming from them have not been explored. This study performs the first backdoor attack against the models trained on the data distilled by dataset distillation models in the image domain. Concretely, we inject triggers into the synthetic data during the distillation procedure rather than during the model training stage, where all previous attacks are performed. We propose two types of backdoor attacks, namely NAIVEATTACK and DOORPING. NAIVEATTACK simply adds triggers to the raw data at the initial distillation phase, while DOORPING iteratively updates the triggers during the entire distillation procedure. We conduct extensive evaluations on multiple datasets, architectures, and dataset distillation techniques. Empirical evaluation shows that NAIVEATTACK achieves decent attack success rate (ASR) scores in some cases, while DOORPING reaches higher ASR scores (close to 1.0) in all cases. Furthermore, we conduct a comprehensive ablation study to analyze the factors that may affect the attack performance. Finally, we evaluate multiple defense mechanisms against our backdoor attacks and show that our attacks can practically circumvent these defense mechanisms.
translated by 谷歌翻译
Blind image quality assessment (BIQA) remains challenging due to the diversity of distortion and image content variation, which complicate the distortion patterns crossing different scales and aggravate the difficulty of the regression problem for BIQA. However, existing BIQA methods often fail to consider multi-scale distortion patterns and image content, and little research has been done on learning strategies to make the regression model produce better performance. In this paper, we propose a simple yet effective Progressive Multi-Task Image Quality Assessment (PMT-IQA) model, which contains a multi-scale feature extraction module (MS) and a progressive multi-task learning module (PMT), to help the model learn complex distortion patterns and better optimize the regression issue to align with the law of human learning process from easy to hard. To verify the effectiveness of the proposed PMT-IQA model, we conduct experiments on four widely used public datasets, and the experimental results indicate that the performance of PMT-IQA is superior to the comparison approaches, and both MS and PMT modules improve the model's performance.
translated by 谷歌翻译